Equine Rhinitis A Virus and Its Low pH Empty Particle: Clues Towards an Aphthovirus Entry Mechanism?

نویسندگان

  • Tobias J. Tuthill
  • Karl Harlos
  • Thomas S. Walter
  • Nick J. Knowles
  • Elisabetta Groppelli
  • David J. Rowlands
  • David I. Stuart
  • Elizabeth E. Fry
چکیده

Equine rhinitis A virus (ERAV) is closely related to foot-and-mouth disease virus (FMDV), belonging to the genus Aphthovirus of the Picornaviridae. How picornaviruses introduce their RNA genome into the cytoplasm of the host cell to initiate replication is unclear since they have no lipid envelope to facilitate fusion with cellular membranes. It has been thought that the dissociation of the FMDV particle into pentameric subunits at acidic pH is the mechanism for genome release during cell entry, but this raises the problem of how transfer across the endosome membrane of the genome might be facilitated. In contrast, most other picornaviruses form 'altered' particle intermediates (not reported for aphthoviruses) thought to induce membrane pores through which the genome can be transferred. Here we show that ERAV, like FMDV, dissociates into pentamers at mildly acidic pH but demonstrate that dissociation is preceded by the transient formation of empty 80S particles which have released their genome and may represent novel biologically relevant intermediates in the aphthovirus cell entry process. The crystal structures of the native ERAV virus and a low pH form have been determined via highly efficient crystallization and data collection strategies, required due to low virus yields. ERAV is closely similar to FMDV for VP2, VP3 and part of VP4 but VP1 diverges, to give a particle with a pitted surface, as seen in cardioviruses. The low pH particle has internal structure consistent with it representing a pre-dissociation cell entry intermediate. These results suggest a unified mechanism of picornavirus cell entry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conservation of L and 3C proteinase activities across distantly related aphthoviruses.

The foot-and-mouth disease virus (FMDV) leader (L) proteinase is an important virulence determinant in FMDV infections. It possesses two distinct catalytic activities: (i) C-terminal processing at the L/VP4 junction; and (ii) induction of the cleavage of translation initiation factor eIF4G, an event that inhibits cap-dependent translation in infected cells. The only other member of the Aphthovi...

متن کامل

Picornavirus RNA is protected from cleavage by ribonuclease during virion uncoating and transfer across cellular and model membranes

Picornaviruses are non-enveloped RNA viruses that enter cells via receptor-mediated endocytosis. Because they lack an envelope, picornaviruses face the challenge of delivering their RNA genomes across the membrane of the endocytic vesicle into the cytoplasm to initiate infection. Currently, the mechanism of genome release and translocation across membranes remains poorly understood. Within the ...

متن کامل

Equine infectious anemia virus entry occurs through clathrin-mediated endocytosis.

Entry of wild-type lentivirus equine infectious anemia virus (EIAV) into cells requires a low-pH step. This low-pH constraint implicates endocytosis in EIAV entry. To identify the endocytic pathway involved in EIAV entry, we examined the entry requirements for EIAV into two different cells: equine dermal (ED) cells and primary equine endothelial cells. We investigated the entry mechanism of sev...

متن کامل

Sialic acid acts as a receptor for equine rhinitis A virus binding and infection.

Equine rhinitis A virus (ERAV) is a member of the genus Aphthovirus, family Picornaviridae, and causes respiratory disease in horses worldwide. To characterize the putative receptor molecule(s) of the ERAV isolate 393/76 (ERAV.393/76) on the surface of Vero and other cells, an assay was developed to measure the binding of purified biotinylated ERAV.393/76 virions to cells by flow cytometry. Usi...

متن کامل

Receptor-mediated entry by equine infectious anemia virus utilizes a pH-dependent endocytic pathway.

Previous studies of human and nonhuman primate lentiviral entry mechanisms indicate a predominant use of pH-independent pathways, although more recent studies of human immunodeficiency virus type 1 entry appear to reveal the use of a low-pH-dependent entry pathway in certain target cells. To expand the characterization of the specificity of lentiviral entry mechanisms, we have in the current st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2009